INTRODUCTION

Indonesia is a developing country but it can be a developed country that is not impossible by utilizing the demographic bonus that is currently happening in Indonesia. The peak of demographic bonus is estimated to occur in 2020 to 2025, which is marked by the portion of young people who dominate the Indonesian population, which is estimated to be 174-180 million of the productive age population who are ready to move the Indonesian economy. "There are several countries in East Asia that also take advantage of the demographic bonus period of the country which was originally a middle country, now a developed country. The key is the ability to use the demographic bonus "(Movanita, This article has been aired on Kompas.com with the title" It Is Impossible for Indonesia to Be a Developed Country, This is the Requirement, "Movanita, & Setiawan, 2019).

However, demographic bonuses that occur in Indonesia can be supported with optimal productivity. Therefore, from now on, the Indonesian government is preparing a long-term plan until 2045 which is almost the same as the demographic bonus period in Indonesia. The plan is carried out until the demographic bonus ends where the productive young workforce can be put to good use.
The impact of demographic bonus going forward is Indonesia's economic growth which is getting stronger. If Indonesia is currently able to maintain economic growth at 5.1% then Indonesia can move up the class with the category of high-income countries or developed countries.

In addition, the thing that must be considered in the future is to prepare workers in the face of the 4.0 industrial revolution and the digital economy, where people will compete with technology. If you do not have the skills it will lose competitiveness with other workers. What is currently the government's concern is vocational training. Not many workers have met the workers' criteria needed by job seekers. Then those who can develop and improve the quality of vocational training are educational institutions.

Educational institutions in which there are school institutions, family institutions and community institutions whose role is very strategic to become the center of educational activities in developing the potential of every human being. "Because optimizing the role of the three educational institutions will certainly produce a smart nation" (Gazali, 2013).

Educational institutions are a place to foster humanity in order to lead to a better future. In this case for changes and developments according to the color and style of the institution. So "educational institutions must have an appropriate learning system whose demands are adjusted to their respective duties and roles and are based on standards or quality standards that are applied" (Mukhid, 2007).

Efforts to improve the performance of vocational high school teachers continue to be proclaimed by each element of education through the improvement and standardization of the quality of education that: Awareness of the importance of educational changes requires the necessity of curriculum changes that have implications for the development of human resources and learning facilities, and the most important aspect is teacher readiness and professionalism are demands to be fulfilled (Muzhoffar, 2003).

One of them is the improvement of the quality of education in 2005 the government issued Republic of Indonesia regulation number 19 of 2005 concerning national education standards, this regulation was an attempt by the government to improve the quality of education in Indonesia. The regulation is a strategy to improve education Saifullah et al stated "government regulations on national education standards contribute to improving the quality of education" (Saifulloh, Muhibbin, & Hermanto, 2012).

The national education system is an overall component of education that is interrelated as a whole to achieve the goals of national education, Hadikusumo stated management of improving school quality, improving the quality of sustainable schools, school culture, Islamic basic education on school satisfaction can have a positive effect if policy formulation in an educational institution can well structured and applied (Hadikusumo, 2012).

Naturally the national education system mandates how education can produce smart, faithful, noble students, have an integrated understanding of science, devotion, and have professional work skills and community skills needed for their future. Therefore, in improving a Vocational High School Teacher Performance (SMK) the institution needs a strategy that can be sustainable in order to realize a better Vocational High School Teacher Performance (SMK).

Strategies to improve the quality and responsibility of an educational institution or university must have lecturers who can work to fulfill the rights of lecturers and create a climate of management so that it can support career development, so it can educate students' intellectuals (Alba, 2011).

Because a good strategy can improve the quality of performance both in educational institutions or universities. Management is a collaborative process by utilizing human resources and human resources by implementing the functions of planning, organizing, implementing and controlling to achieve effective and efficient goals (Darmarstuti & Karwanto, 2014).

The success in improving the performance of vocational high school teachers depends on components that can support its implementation, one of which is the management of
infrastructure "(Solichin, 2011). If the management of infrastructure has been done well, it can support the learning process.

For this reason, the supporting infrastructure is a very educational factor in the world of education other than education personnel. Because education cannot run well without the availability of infrastructure. So the management of infrastructure also contributes to the learning process, therefore "management of infrastructure is said to be good if it has planning, determination, inventory, maintenance and deletion" (Nasrudin & Maryadi, 2018).

The smooth process of achieving educational goals needs to be supported by human resources, material, facilities and infrastructure as a material for educational activities in schools often become obstacles in the process of providing education.

According to (Nurbaiti, 2015) that: Planning and procurement of facilities and infrastructure carried out by school principals in accordance with agreed terms, inventory of school facilities and infrastructure has been carried out properly, distribution is carried out directly and indirectly, maintenance of school facilities and infrastructure is carried out periodically and incidentally, supervision and accountability (reporting) of school facilities and infrastructure is carried out by the school principal and is carried out once a year during the new school year.

Because if there is no routine control of infrastructure, then over time the infrastructure will be damaged so that the learning process begins to be disrupted so that the Performance of Vocational High School (SMK) Teachers also decreases.

The strategy to be carried out by an organization or institution in managing infrastructure properly can improve the Performance of Vocational High School Teachers (SMK). For this reason, planning must be implemented in a strategy that considers resources. Because with the "implementation of the strategy can improve coordination which consequently affects the pattern of smart work, so that smart patterns can trigger an increase in organizational performance" (Widodo, 2009).

Strategy implementation can always be implemented well if planning is considered as one of the important management functions and has close links with other management functions. Robbin and Mary Coulter (2004) state that planning includes defining organizational goals, establishing overall strategies for integrating and coordinating organizational work. Planning involves outcomes and targets as "long-term organizational planning and is used as a guideline to describe other plans as short-term planning" (Rusniati & Haq, 2014).

Based on the description of the problem above, it is interesting that the researcher is interested in examining the effect of organizational strategy and management of targeted infrastructure in improving the performance of 27 DKI Jakarta Vocational High School (SMK) Teachers.

RESEARCH METHODOLOGY

Design of this research uses quantitative with path analysis techniques. The reason for choosing the survey method is because it explains or illustrates the phenomenon being studied about several variables that influence in a path diagram. Thus, the technique used is the path analysis technique (path analysis).

RESEARCH RESULTS AND DISCUSSION

The structural model shown in Figure 1 above consists of two substructures, namely Sub-Structure-1 and Sub-Structure-2. The causal relationship between variables in Sub-Structure-1, which is shown in Figure 1. below, consists of one endogenous variable, Y and two exogenous variables, namely X, and X2. The structural equation for sub-structure 1 is as follows:
\[Y = \beta_{y_1}X_1 + \beta_{y_2}X_2. \]

![Causal relationships in Sub-Structure 1.](image)

Figure 1 Causal relationships in Sub-Structure 1.

The results of data processing, using SPSS version 22 computer software, are shown in Tables 1 through Table 3 with summary results of calculations and testing of path coefficients in Table 4.

Overall test or F test on Sub-Structure -1, with the F value calculated = 44.820, as in Table 1, greater than the F table for \(\alpha = 0.05 \) of 2.7, then it can be continued with individual tests or t tests. A summary of the results of t-test calculations is presented in Table 1.

Table 1. ANOVA Model 1 - Sub-Structure 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>1312,029</td>
<td>2</td>
<td>656,014</td>
<td>44,820</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>1361,211</td>
<td>93</td>
<td>14,637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2673,240</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Var Y

b. Predictors: (Constant), Var X2, Var X1

Table 2 Coefficients Model 1 - Sub-structure 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>5.901</td>
<td>3.013</td>
<td>1.958</td>
</tr>
</tbody>
</table>
a. Dependent Variable: Var Y

<table>
<thead>
<tr>
<th>Table 3 Summary Model 1 - Sub-Structure 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Summary of Calculation Results and Testing the Sub-Structure of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>thePathPath</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>b_{y1x1}</td>
</tr>
<tr>
<td>b_{y2x1}</td>
</tr>
</tbody>
</table>

In Table 4 above, it shows that not all path coefficients are significant at α = 0.05, because not all \(t_{\text{value}} \) is greater than \(t_{\text{df}} \). The path coefficient \(b_{y1x1} \) is significant, and the path coefficient \(b_{y2x1} \) is also significant. Based on the analysis results of sub-structure path 1 (\(X_1; X_2; \) and \(Y \)) that appear in Table 2. Coefficients - Sub-Structure 1, each value is obtained:
a) \(b_{yx1} = \text{Beta} = 0.403 \) [\(t = 5.191 \) and probability (sig) = 0.000]

b) \(b_{yx2} = \text{Beta} = 0.464 \) [\(t = 5,983 \) and probability (sig) = 0.000]

The results of the analysis prove that all path coefficients are significant. Based on the analysis in Table 2 was obtained coefficient lines X1 to Y for \(b_{yx1} = 0.403 \) and X2 on Y for \(b_{yx2} = 0.464 \). While the coefficient is reflected or the contribution of X1 and X2, to Y is \(R^2_{yx} = R^2_{yx1} = 0.491 \) as in Table 3, which means that 49.1% of variation in Teacher Performance (Y) can be explained by variations in Organizational Strategies (X1) and Infrastructure Management (X2). The residual coefficient \(b_{y1} = 0.713 \) is the influence of other variables outside of X1 and X2. Thus the structural equation for Sub-Structure 1 is \(Y = 0.403X_1 + 0.464X_2 + 0.713 \), and the path diagram as shown in Figure 2 is as follows:

Figure 2. Causal Relations in Sub-Structure-1

DISCUSSION

1. **Positive Direct Effect of Organizational Strategy on Teacher Performance**

The results of the first hypothesis analysis yielded findings that organizational strategy had a direct positive effect on teacher performance. Based on these findings it can be concluded that teacher performance is directly affected positively by organizational strategy. The better organizational strategy will lead to an increase in teacher performance. By testing the hypothesis as follows:

 Hypothesis Testing 1

 \(H_0 \) : Organizational Strategy (X1) does not affect Teacher Performance (Y).

 \(D_1 \) : Organizational Strategy (X1) influences Teacher Performance (Y).

 Conclusion: Because the value of CR = 5.247 greater than 1.9855 and \(p = 0.000 \) less than 0.05 then \(H_0 \) is rejected, meaning that the Organization Strategy (X1) effect on Teacher Performance (Y).

2. **Positive Influence of Infrastructure Management on Teacher Performance**

The results of the second hypothesis analysis produced findings that the management of infrastructure had a positive effect on teacher performance. Based on these findings it can be concluded that teacher performance is positively influenced by the management of infrastructure. By testing the hypothesis as follows:
Hypothesis Testing 2

H₀ : Infrastructure Management (X) does not affect Teacher Performance (Y).

H₁ : Infrastructure Management (X) influences Teacher Performance (Y).

Conclusion : Because the value of CR = 6.048 1ebih greater than 1.9855 and p = 0.000 less than 0.05 then H₀ is rejected, meaning Infrastructure Management (X) effect on Teacher Performance (Y). Based on Table 3, Standardized Regression Weights, the amount of influence is 0.464.

CONCLUSION

Based on the results of the analysis and discussion described previously, the conclusions of this study are as follows:

1. Organizational strategy has a direct positive effect on teacher performance. This means that the better the organizational strategy will lead to an increase in teacher performance.

2. The management of infrastructure has a direct positive effect on teacher performance. This means that the better management of infrastructure means it will lead to an increase in teacher performance.

REFERENCES

